Prototyping in Mechanical Engineering

Class 5: Motion

Movie Break!

Today's Agenda

- Movie Break!
- Intro to Motion
- Power Transmission
- Linear Actuation
- Rotary Actuation

Intro to Motion

Introduction

- What is Motion?
 - Things (with mass) moving (from one place to another)
- Newton's Laws:
 - Inertia
 - F = ma
 - Opposing forces
- Today's class:
 - A warming blend of practical and theoretical

Newton's Second Law

Force = Mass * Acceleration

Force

$$\mathbf{N} = kg \cdot \left(\frac{m}{s^2}\right)$$

Torque

- Torque is the rotational equivalent of Force
 - Torque = Force * Moment Arm
 - Torque is measured in Newton-meters (Nm)

Work

Work = Force * Distance

Work

Joule (unit) = $N \cdot m$

Work

$$\mathbf{J} = kg \cdot \left(\frac{m^2}{s^2}\right)$$

Energy

- Energy and Work use the same units:
 - Joules
- Energy can be used to do work
- Energy also measures losses to heat
- Energy is conserved
 - Energy in = Energy out
 - Work in = Work out + heat
- Efficiency

$$\eta = \frac{(Useful) Energy out}{Energy in}$$

Energy, another way to calculate

Kinetic energy

$$KE = \frac{1}{2}mv^2$$

- Potential energy
 - Gravitational

$$PE = mgh$$

Mechanical (springs)

$$PE = \frac{1}{2}kx^2$$

- Chemical
- Others

Energy Example

$$PE_{spring} = KE_{launch} = PE_{gravitational}$$

$$\frac{1}{2}kx^2 = \frac{1}{2}mv^2 = mgh$$

$$\frac{1}{2}(12)(0.5)^2 = \frac{1}{2}(1)v^2 = (1)(9.81)h$$

$$\frac{1}{2}(12)(0.5)^2 = 1.5J = \frac{1}{2}(1)v^2 = (1)(9.81)h$$

$$v = \sqrt{3} \approx 1.73 \, \frac{m}{s}$$

$$h = \frac{1.5}{9.81} = 0.15 \, m$$

Power

Power = Work / Time

Power

Watt (unit) =
$$J/s$$

Power

Watt =
$$kg \cdot \left(\frac{m^2}{s^3}\right)$$

Gravity

- Gravity is an acceleration that acts on all things with mass:
 - Gravity (sea level) = $9.81 \frac{m}{s^2}$

$$F_g = 9.81 * (m)$$

• Work done to raise 10 kg one meter?

$$W_g = 9.81(10)(1) = 98.1 J$$

Power required to raise 10kg one meter in 30 seconds?

$$\frac{9.81(10)(1)}{30} = 3.27 W$$

Gravity

Do our units make sense?

$$\frac{9.81(10)(1)}{30} = 3.27 W$$

Let's see:

$$\frac{\left(9.81\frac{m}{s^2}\right)(10\ kg)(1\ m)}{30\ s} = \frac{(9.81)(10)(1)\left(m^2\right)(kg)}{30\ s^3} = (3.27)\left(\frac{kg\ m^2}{s^3}\right) = 3.27\ W$$

Hooray!

Power Tradeoffs

Power = Work / Time

Power = $_{Work / Time}$

Power = Work / Time

Control & Stability

- Stability: The tendency to stay where you are
 - Like inertia!
- Control: The ability to change your system's state
 - Hates inertia!

Control & Stability

Power = Stability * Control

Power = Stability * Control

Control Systems

Movie Break!

Control Systems

- How do I get a thing to where I want it to be?
- State information (sensors)
- Output
- Open loop vs. closed loop

Degrees of Freedom

- Mechanical systems are often defined by their "Degrees of Freedom"
 - A free body has 6 DOF
 - 3 rotational
 - 3 translational
 - A motor is 1 DOF
 - 1 rotational
 - A slider is 1 DOF
 - 1 translational

Degrees of Freedom

Movie Break!

Today's Agenda

- Movie Break!
- Intro to Motion
- Power Transmission
- Linear Actuation
- Rotary Actuation

Power Transmission

Power Transmission

- Types of power transmission
 - Linkages
 - Belts and pulleys
 - Gearing
 - Other
- The math of power transmission
- Types of gear trains
- Other power transmission topics

Linkages

- Rigid members connected with rotational freedom with respect to each other
- Good for:
 - Odd trajectories
 - Converting between linear movement and rotation
 - Reliably synchronous movement
- Downsides:
 - Potential for vibration
 - Heavy / higher inertia

Linkages

Movie Break!

Belts & Pulleys

- Flexible linkages
 - Belt
 - Rope
 - Chain (kinda)
- Pulleys redirect tension
 - Mechanical advantage by doubling
- Timing belt and chain slips less
- Example
 - Direction of rotation is the same
 - "Gear Ratio" is $\frac{r_{drive}}{r_{driven}}$
 - Work in = Work out*efficiency
 - A smaller gear moves faster
 - A larger gear moves with higher torque

Gearing

- Interlocking teeth transfer power
 - Force exerted on each tooth
- Involute gearing
- When designing:
 - Pressure Angle
 - Module
 - Tooth count

Backlash

- Due to manufacturing imperfections
- Very difficult to prevent, but can be minimized
- Robotic headache

Gear Ratio

$$gear\ ratio = \frac{r_{drive}}{r_{driven}}$$

Conveniently, radius, diameter, and tooth number always mix by the same ratio!

Multiple gear ratios multiply together. Example: I drive a 2-start worm into a 24-tooth spur, the shaft of which drives a 40-tooth spur which drives a 60-tooth spur.

gear ratio =
$$\left(\frac{2}{24}\right) \cdot \left(\frac{40}{60}\right) = (0.083) \cdot (0.66) = 0.055$$

So my output shaft moves 0.055 rotations for every rotation of my input shaft

Gear Ratio

BUT: My output shaft has a **much greater torque** than my input shaft:

torque ratio =
$$\frac{\prod \eta}{gear\ ratio} = \frac{0.70 \cdot 0.95}{0.055} \approx 12!$$

So I'm getting about **12x** as much torque out of this system after the gearing reduction

Note: my rotation is 18x slower, so I'm losing a lot of power to the inefficiency!

A practical example:

• Problem: Lift a 60kg bed to a height of 2m in less than 30 seconds.

Gear Mounting

 Gear manufacturers will specify a 'pitch diameter'

Types of Gears

- Spur gears
- Bevel gears
- Worm gears
- Differential
- Planetary
- Other

Type	Normal	Pitch Line	Efficiency
	Ratio Range	Velocity (m/s)	Range
Spur	1:1 to 6:1	25	98-99%
Helical	1:1 to 10:1	50	98-99%
Double Helical	1:1 to 15:1	150	98-99%
Bevel	1:1 to 4:1	20	98-99%
Worm	5:1 to 75:1	30	20-98%
Crossed Helical	1:1 to 6:1	30	70-98%

Harmonic Drive = zero backlash!

Spur Gears

- Simple
- Cheap
- Easy to manufacture
- High efficiency
- Bulky
- Parallel axes
- Large range of gear ratios
- Helical Gears*
 - Like spurs, but higher torque
 - Smoother and quieter
 - More expensive

Bevel Gears

- Coplanar shafts at angles
- High efficiency
- Common
- Large range of gear ratios
- Straight- and spiral-toothed gears
- Crown Gears

Worm Gears

- Very high gear ratios
 - Worm gear has 'teeth'
- Very compact
 - Not coplanar rotation
- Medium efficiency
- Medium cost
- Crossed-helical gears:

Differential

- 5+ gearing system
- Diverts power between two output shafts
- Drive wheels in vehicles which turn

Differential

Movie Break!

Planetary Gears

- aka "epicyclic gears"
- Very compact!
- Co-axial
- Can be chained easily
- Medium and high gear ratios

Power Transmission: Other

- Clutches
- Rack & Pinion
- Bearings
- Threaded Rods

Bearings

- For smooth relative motion
- Journal/Plain bearings
 - Cheap, compact
 - Low max RPMs
 - Can be radial, axial, or both
 - Require lubricant
- Ball bearings
 - Cheap
 - High max RPMs
 - Typically radial, but can be axial/both
- Needle & Roller bearings
 - Expensive, can be very compact
 - High max RPMs
 - Radial, axial, or both
- Air bearings
 - Expensive
 - Very high max RPMs
- Linear bearings

Threaded Rods

- Conversion from rotational to linear
- Trapezoidal threads for moving applications
- Multi-start threads
- Ball screws
 - Minimize backlash!

Today's Agenda

- Movie Break!
- Intro to Motion
- Power Transmission
- Linear Actuation
- Rotary Actuation

Linear Actuation

Linear Actuation

- Solenoids
- Pneumatics/Hydraulics
- Electrical linear actuators
- Others

Solenoids

- Electric coil with magnet
 - Linear movement between two points
 - Can be spring-return or latching
 - High power draw when active
 - Huge inductive load
 - use a flyback diode!
- Speakers
 - Linear movement in range
 - Displace fluid in waves to create sound
- Microphones
 - Just reverse-speakers

Pneumatics/Hydraulics

- Pneumatic cylinders
 - Simple, fast operation between two points
 - Spring-return or dual-acting
 - Uses compressed air
 - Solenoid valves allow easy electronic integration
 - Please use a speed controller
- Hydraulics
 - Slower, extremely high-force operation in linear range
 - Tend to be expensive
 - Requires liquid (typically hydraulic fluid)
 - High pressures, so system must be robust

Electrical Linear Actuators

- Linear stepper
 - Expensive
 - Easy to implement
- Rotary-to-linear
 - NCLAs
 - Ball screws
 - Threaded rods

Today's Agenda

- Movie Break!
- Intro to Motion
- Power Transmission
- Linear Actuation
- Rotary Actuation

Rotary Actuation

Rotary Actuation

- Sensors
 - Rotational Encoders
 - End switches
 - Hall Effect Sensors
- Actuators
 - DC Motors
 - (Micro)servos
 - Steppers

DC Motors

- Brushed
 - Extremely cheap
 - Require H-bridge to control speed, direction
 - Terrible for open-loop control
 - Require sensors for closed-loop control
 - Low precision

DC Motors

- Brushless
 - High RPM
 - Requires electronic speed controller (ESC)
 - Drone applications: light and high RPM
 - Also requires sensors for positioning
 - Same problems with control
 - Low precision

Gear Motors

- Brushed motors with gearing!
 - High torque/low RPM
 - Compact
 - Cheap
 - Still not great for control
 - Slower RPM makes tracking position easier

Servomotors

- Motors with feedback!
 - More complicated to use
 - Internal closed-loop control
- Micro-servos
 - Very light
 - High torque
 - Limited range of motion

Stepper Motors

- Uses alternating coils to advance rotation in small increments
 - Usually specify 1.8 degrees/step or 0.9 degrees/step
- Low RPM (max ~1200)
- High torque
- Steps allow very precise movement
- Coils can 'brake', preventing movement
- Pretty cheap
- Requires stepper driver

Stepper Drivers

- Drivers are current limiting
 - Prevents coil burnout
- Torque is voltage based
 - Steppers can be driven above listed voltage if good drivers are used
- Microstepping can increase precision to 16x or 32x step increment!
 - 0.9 degrees / 32 = 0.028 degrees
- Can be used with open-loop easily
- Need sensors for closed-loop control

Today's Agenda

- Movie Break!
- Intro to Motion
- Power Transmission
- Linear Actuation
- Rotary Actuation

Engineering is about persistence.

Stuff will break. If you can build it, you can fix it.

Questions? Office Hours!

Will Fischer will@wfisch.com

